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Control of multistate hopping intermittency
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In multistable regimes, noise can create “multistate hopping intermittency,” i.e., intermittent transitions
among coexisting stable attractors. We demonstrate that a small periodic perturbation can significantly control
such hopping intermittency. By “control” we imply a qualitative change in the probability distribution of
occupation in the phase space around the stable attractors. In other words, if the uncontrolled system exhibits
a preference to stay around a given attractor (say “A”) in comparison to another attractor (say “B”), the control
perturbation creates a contrasting scenario so that attractor B is most frequently visited and consequently, the
occupation probability becomes maximum around B instead of A. The control perturbation works in the
following way: It destroys attractor A by boundary crisis while attractor B remains stable. As a result, even if
the system is pushed by noise into the erstwhile basin of attractor A, the system does not remain there for long
and therefore stays longer around attractor B. Significantly, such a change in the intermittent scenario can be
obtained by a small-amplitude and slow-periodic perturbation. The control is theoretically demonstrated with
two standard models, namely, Lorenz equations (for autonomous systems), and the periodically driven, damped
Toda oscillator (for nonautonomous systems). Recent experiments with a cavity-loss modulated CO, laser and

an analog circuit of Lorenz equations have validated our theoretical demonstrations excellently.
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I. INTRODUCTION

Intermittency can be broadly defined as sustained inter-
mittent transitions among qualitatively different types of dy-
namical behavior. Some well known examples are (i)
Pomeau and Manneville (PM) types of intermittency [1], (ii)
crisis-induced intermittency [2,3], and (iii) on-off intermit-
tency [4]. In the case of symmetric multistable systems (like
two-well potential Duffing oscillator [5] or cubic map [6])
crisis-induced intermittency occurs in the form of intermit-
tent switching between two coexisting chaotic attractors.
Various reports have established that crisis-induced intermit-
tency (with or without noise) exhibits some scaling laws
somewhat analogous to those of Feigenbaum sequence and
PM intermittency [5-7].

Multistable systems that do not possess any symmetry can
also exhibit intermittent jumps among coexisting attractors in
the presence of noise [8]. Also, the attractors need not be
chaotic and the number of such attractors could be arbitrary.
The occurrence of intermittent jumps depends on the
strength of noise, basin sizes, the nature of basin boundaries,
and the time duration of the transient dynamics towards the
attractor(s) [9]. In general, the threshold strength of noise
required to knock the system out of a given attractor depends
on the separation in the phase space between the attractor
and the neighboring boundary saddle. Therefore the smaller
the basin of attraction is, the more susceptible the system is
to move out of the attractor. In contrast, the larger basins will
be able to hold the system inside relatively for stronger noise
[10]. When the noise is so strong that no basin can hold the
system for long, it leads to intermittent hopping among co-
existing attractors (henceforth referred to as “multistate hop-
ping intermittency”). Notably, PM, on-off and crisis-induced

*binoy @barc.gov.in

1539-3755/2008/78(6)/066208(7)

066208-1

PACS number(s): 05.45.Ac, 42.65.Sf, 44.25.+f, 05.45.Gg

intermittency occur in the close neighborhood of some local
bifurcations or crises. In contrast, hopping intermittency can
occur anywhere in the parameter space as long as the system
remains multistable. Intermittent switching is a special case
of hopping intermittency (in the case of symmetric multi-
stable systems) that occurs when the coexisting chaotic at-
tractors simultaneously collide with the common boundary
saddle, resulting in the merger of the chaotic attractors in the
phase space. The presence of adequately strong noise may
advance the onset of such intermittent switching.

Numerous efforts have been made towards controlling
PM, on-off, and crisis-induced intermittency. For instance,
one may look into some reports on the control of on-off
intermittency applying (i) a small feedback control [11], (ii)
periodic modulation of system parameters [12], or (iii) by
low-frequency noise [13]. Similarly, control of crisis-induced
intermittency has also been demonstrated in the dynamics of
a kicked, damped spin with the help of small, occasional
changes of a system parameter [14]. Pomeau-Manneville
type-I intermittency also exhibits qualitative changes under
periodic perturbation of system parameters [15]. However, to
our knowledge, no significant effort has been made so far to
control multistate hopping intermittency.

In this paper, we demonstrate that a small periodic pertur-
bation can successfully control such hopping intermittency.
The perturbation could be in the form of modulation of any
system parameters, or as a driving force. To verify the ro-
bustness of the control mechanism, we explore the dynamics
of not only one trajectory but simultaneously a large number
(say N,) of trajectories over a suitably large phase-space re-
gion around the coexisting attractors. We divide this phase-
space region into a large number (say N,) of pixels (or cells)
and simulate the dynamics of all trajectories for a large time
interval (say N5 suitably small time steps). Finally, we com-
pute the occupation probability at any given pixel as the total
number of visits in the pixel, normalized by N;N,N;. By
“control” we imply a qualitative change in the probability
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distribution of occupation in the phase space around the co-
existing stable attractors. In other words, if the uncontrolled
system exhibits preference to stay around a given attractor
(say “A”) in comparison to another attractor (say “B”), the
control perturbation creates a contrasting scenario so that at-
tractor B is visited most frequently and consequently, the
occupation probability becomes maximum around attractor B
instead of A. The control perturbation works in the following
way: it leads to boundary crisis of attractor A while attractor
B remains stable. As a result, even if the system is pushed by
noise into the erstwhile basin of attractor A, the system does
not remain there for long and preferentially remains around
attractor B. Significantly, we demonstrate that such a control
in the intermittent scenario can be obtained by a small-
amplitude and slow-periodic perturbation.

Furthermore, keeping in mind the broad applicability of
the control mechanism over a range of nonlinear systems of
interest, we consider two standard models, Lorenz equations
and the Toda oscillator.” The Lorenz model can exhibit mul-
tistability by pitchfork and subcritical Hopf bifurcations. In
this paper, we consider the case of multistability created by
subcritical Hopf bifurcation. The Toda oscillator on its own
does not exhibit Hopf bifurcation or multistability. However,
in the presence of periodic force or parametric excitation, it
can exhibit multistability due to overlap of more than one
(sub)harmonic resonance [23,24] or recurrent period
n-tupling (n=3,4,5,...) phenomena [22,23]. By testing the
control mechanism on the Lorenz model and the periodically
forced Toda oscillator, we intend to verify its applicability
among a broad variety of autonomous as well as periodically
driven multistable systems, including class-C lasers, fluid dy-
namical systems, and parameter modulated class-B lasers.

The content of the paper is organized as follows. In Sec.
II, we demonstrate the control of two-state intermittency in
the case of the Toda oscillator that is driven by two periodic
forces and Gaussian white noise. The primary force creates
the bistable scenario (simultaneous coexistence in the phase
space of period-1 and period-2 attractors). The noise induces
intermittent jumps from period 2 to period 1 though the oc-
cupation probability remains maximum around period 2.
Next we show that an additive secondary periodic force can
create a completely contrasting scenario where the occupa-
tion probability becomes maximum around period 1 thus
demonstrating controlled reduction of visits towards period
2. In Sec. III we demonstrate the control in the case of the
Lorenz model. We operate in a parameter regime that exhib-
its coexistence of a chaotic attractor and two steady states. In
the presence of adequately strong noise, the system intermit-
tently jumps from the chaotic attractor to the steady states
even though the occupation probability remains maximum
around the saddle of the chaotic attractor. Here again we

"This model is a universally recognized paradigm of autonomous
systems, including thermal fluid dynamics and class-C lasers like
NH; [16] and Raman lasers [17].

*This oscillator may be considered as a paradigm of a large class
of periodically forced nonlinear systems, including various class-B
lasers [18,19] like CO,, Nd-YAG, doped fiber, and semiconductor
lasers, and oscillators [20]. Also it exhibits fascinating qualitative
similarity with the Hénon map [21,22].
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show that a small-amplitude periodic modulation of any sys-
tem parameters creates a contrasting scenario where the oc-
cupation probability around the saddle drastically reduces. In
comparison, the steady states become most preferred attrac-
tors.

II. CONTROL OF HOPPING INTERMITTENCY
IN TODA OSCILLATOR DYNAMICS

The Toda oscillator is described by

X:Y;

Y=—aY - (eX=1)+F,cos(wy7) + F, cos(w,7+ ¢) + &,
(1)

where F; and w; are, respectively, the amplitude and fre-
quency of the primary force (“drive”). F, and w, are, respec-
tively, the amplitude and frequency of the control perturba-
tion. The phase term ¢ is introduced to take into account any
possible phase difference between the drive and the control.
& represents the Gaussian white noise of standard deviation
o. We consider the dissipativity @=0.015 and drive fre-
quency w,=1.95. Figure 1(a) shows the bifurcation diagram
with the drive amplitude as the control parameter. The
period-1 state (denoted by “1”) undergoes subcritical period
doubling at point “D” and the system jumps to the period-2
state (denoted by “2”). If we follow the period-2 branch
while reducing the drive amplitude, period 2 disappears via
inverse saddle node bifurcation at the point “E.” Thus one
can notice the coexistence of period-1 and -2 attractors in the
interval 0.1 <F;=<0.3 (denoted by ED). At any point in this
interval, noise of adequate strength can create intermittent
transitions between period 1 and 2. In Fig. 1(b), we consider
F,=0.2 as a typical example and show the basins of both the
attractors, demarcated by the stable manifold (green and ma-
roon curves in color online and dark lines in print) of the
period-2 saddle (“S”). The unstable manifold (light blue
curves in color online and gray lines in print) asymptotically
approaches the period-1 and -2 attractors. The period-2
saddle and its manifolds are computed using Kawakami’s
algorithm [25]. In this plot, manifolds, stable, and saddle
equilibriums have been shown after stroboscopic sampling
with the sampling frequency w,; The basin boundary is
smooth as there is no homoclinic intersection. The separation
of the period-2 attractor from the period-2 boundary saddle
(“S”) is larger in comparison to that for the period-1 attrac-
tor. Therefore at low strength of noise, one may observe
unidirectional transition from period 1 to period 2 but not the
other way. We increase the standard deviation of noise until
we observe reasonably frequent intermittent jumps. The time
series in Fig. 1(c) shows such a case at standard deviation
0=0.4. The period-1 and -2 attractors are located on the
horizontal arrows (denoted by “1” and “2”, respectively).
Since the basin of period-2 attractor is much larger in com-
parison to that of the period-1 attractor, the system remains
in the vicinity of the period-2 attractor for much more time
than that around period 1.

Next we introduce a slow-periodic control (w,.=0.039;
w,<w,), and increase the control amplitude (F.) gradually
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FIG. 1. (Color online) Control of two-state hopping intermit-
tency in the Toda oscillator dynamics. (a) The bifurcation diagram
with F; as the control parameter shows the coexistence of period-1
and -2 attractors in the interval 0.1<F;<0.3 (denoted by “ED”).
(b) The basins of period-1 and -2 attractors are demarcated by the
stable manifold of the period-2 saddle (“S”). (c) The time trace X(7)
indicates that the system stays most of the time in the period-2
attractor and occasionally visits the period-1 basin; ¢=0.4. (d) In
the presence of control (w,=0.039, F.=0.03, ¢$=0.0), the intermit-
tent jumps exhibit a completely contrasting scenario. (¢) The bifur-
cation diagram with F,. as the control parameter; F;=0.2, w.
=0.039. The sampling frequency is equal to w. The controlled
period 2 (P,) becomes chaotic via the sequence of period doubling.
Eventually the chaotic attractor is destroyed via the boundary crisis
at F.=0.03 and the system jumps to the controlled period-1 state
(Py). (f) The boundary crisis of the chaotic attractor (“C”) in asso-
ciation with the homoclinic tangency at F,.=0.03. (g) The paramet-
ric dependence of crisis thresholds of period-2 and -1 attractors;
F;=0.2. (h) The dependence of the crisis threshold of the period-2
attractor on the amplitude of the primary drive; w.=0.039.

by a small magnitude. For F.>0.03, we observe a significant
development, as one can notice from the time series in Fig.
1(d). The system visits the neighborhood of period 1 for
much more time in comparison to that around the period-2
state. This is a completely contrasting scenario in compari-
son to the uncontrolled dynamics. The role of the control
perturbation in creating such a fascinating effect can be un-
derstood by analyzing the noise-free case. The control
mechanism works in two ways: On one side, the period-2
attractor (P,) becomes chaotic via Feigenbaum sequence
[see the bifurcation diagram in Fig. 1(e)]. On the other hand,
the invariant manifolds of the saddle undergo metamorpho-
ses that leads to a homoclinic tangency. We illustrate the
scenario in Fig. 1(f) for F.~0.03. In this plot, manifolds,
chaotic orbit, and equilibriums have been shown after stro-
boscopic sampling with the sampling frequency w.. The
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period-2 saddle is denoted by the point “S.® The unstable
manifold components of this saddle are shown by light blue
curves in color online and gray lines in print. One component
that asymptotically converges to the period-1 attractor (de-
noted by the filled circle symbol “1,” violet in color and
black in print) qualitatively remains unchanged. In contrast,
the other component undergoes significant transformation in
the form of infinitely much stretching and folding. The cha-
otic attractor, shown by the dark blue curve in color online
and dark curve in print, lies in the closure of the unstable
manifold. The stable manifold components are shown by
green and maroon curves in color online and dark lines in
print. One may notice the homoclinic tangency of the mani-
folds that leads to the boundary crisis of the chaotic attractor.
Consequently, past the crisis (F.>0.03) the system settles
down at the period-1 state.

Indeed, the control mechanism perturbs the period-1 at-
tractor as well. If we increase the control amplitude suffi-
ciently large, period 1 will also eventually become chaotic
and an interior crisis later will expand the chaotic attractor in
the phase space. However, the threshold control amplitude of
such a scenario is very much larger in comparison to that
required for boundary crisis of the period-2 attractor. To ex-
plain this point further, let us denote the threshold control
amplitude to create the interior crisis of the period-1 attractor
by C;. Similarly, the threshold control amplitude to create
the boundary crisis of the period-2 attractor is denoted by C,.
In Fig. 1(g), we show the parametric dependence of these
two threshold amplitudes, namely, C; (maroon curve in
color) and C, (green curve in color) on the control frequency
.. The remaining system parameters are unchanged. We
notice that C;>C, in the entire control frequency range.
Therefore by suitable choice of the control parameter values,
one can selectively destroy the period-2 attractor.” The con-
trol mechanism works in a similar way in the case of noise-
induced hopping intermittency. Past the crisis, even if the
noise triggers the system to move into the erstwhile basin of
the period-2 attractor, the chaotic transient would not last
there for long and the system would come back close to the
period-1 attractor. This explains how the periodic perturba-
tion controls the noise-induced hopping intermittency.

We now consider again the noise-free dynamics to ex-
plore how the threshold control amplitude (C,) varies in the
bistable window [“ED” in Fig. 1(a)]. Figure 1(h) shows the
dependence of C, on the drive amplitude when the control
frequency w.=0.039. We find that the threshold control am-
plitude increases as one moves away from the inverse saddle
node bifurcation point [“E” in Fig. 1(a)] towards the subcriti-
cal period doubling point [“D” in Fig. 1(a)]. This feature can
be attributed to the phase-space separation between the P,

3In what follows, we follow the convention of the uncontrolled
case [Fig. 1(b)] to identify the controlled period-2 saddle, its invari-
ant manifolds, and the controlled period-1 and -2 attractors. This is
done so that one can easily compare the uncontrolled case [Fig.
1(b)] with the controlled one [Fig. 1(f)].

*If the control frequency is incommensurate with the drive fre-
quency, the oscillator can become chaotic via quasiperiodic torus
and strange nonchaotic attractor formation [26,27]. The chaotic at-
tractor later is destroyed by boundary crisis.
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attractor and the saddle. The saddle is closest to the P, at-
tractor near the saddle node bifurcation condition. Therefore
the threshold control amplitude (C,) will be minimum near
point E. As one moves towards subcritical period doubling,
the phase-space separation between the period-2 attractor
and saddle increases. This leads to an increase of the thresh-
old control amplitude (C,) as we have observed. Conse-
quences are similar in the case of noise-induced hopping
intermittency. The control amplitude, required to reduce the
intermittent jumps to the period-2 basin, increases as one
proceeds along the bistable window “ED” in Fig. 1(a) from
the inverse saddle node bifurcation condition to subcritical
period doubling.

So far, we have demonstrated the control of intermittent
jumps with one trajectory. To show the robustness of the
control mechanism, we now consider the case when the con-
trol is applied on a large number of trajectories (N;=400)
simultaneously, and for each trajectory, ¢ has been chosen
randomly. The initial points of the trajectories are organized
in a two-dimensional (20X 20) array formation over the
phase-space region (-2<X<2;-2<Y<2) that covers the
period-2 as well as the period-1 attractors. First the simula-
tions are carried out for a certain initial time period to take
care of the transient relaxations, and then for an interval [N,
periods of simulation cycles, each cycle (=27/w,) consists
of 250 time steps of integration]. For this second interval we
monitor the locations of the trajectories in the same phase-
space region after stroboscopic sampling at the drive fre-
quency w, We divide the selected phase-space region in
N,(=400 X 400) pixels and compute the total number of vis-
its in each pixel [say, N(X,Y)]. Thus the occupation probabil-
ity at a given pixel around (X,Y), denoted by D(X,Y)
=NMII%%. Since, D is usually small, in the three-dimensional
plots of D(X,Y) in Fig. 2, we show D scaled up by some
suitable number. In each plot, the color bar and the vertical
coordinate denote the occupation probability D(X,Y). Figure
2(a) shows the uncontrolled scenario when the occupation
probability is highest around the period-2 attractor, and much
smaller around period 1. The preference of the period-2 at-
tractor in comparison to period 1 is due to the relatively large
basin of the period-2 attractor. Next we introduce the control
modulation (w,=0.039) and increase the control amplitude
gradually. Figure 2(b) shows the effect of control modulation
of amplitude F.=0.01. The occupation probability around
period 1 shows a significant improvement even though the
probability remains maximum around period 2. At F.=0.02
[Fig. 2(c)], the probability distribution exhibits a contrasting
scenario, i.e., the probability is maximum around the
period-1 attractor while the probability around the period-2
state is about half of that around the period-1 state. These
observations suggest the occurrence of noise-induced bound-
ary crisis at F,=0.02 that is less than the deterministic
threshold 0.03. This is because the crisis threshold reduces in
the presence of noise [3]. Figure 2(d) shows the probability
distribution when F,. is increased to 0.03. In comparison to
the Fig. 2(c) scenario, the occupation probability around the
period-1 attractor has increased further. This is because the
lifetime of the chaotic transient reduces drastically as the
value of F, is increased even slightly beyond the threshold
value. So the effect of control can be improved further by
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FIG. 2. (Color online) Demonstration of the control mechanism
simultaneously over an ensemble of trajectories: F;=0.2; 0=0.6. In
the three-dimensional illustrations, phase-space occupation prob-
ability distribution D(X,Y) is shown along the z coordinate and the
color bar while the other two coordinates (X,Y) describe the phase
space. (a) For an uncontrolled case, the occupation probability D is
highest around the period-2 attractor (denoted by “2”) and much
less around period 1 (denoted by “1”). Plots (b)—(d) illustrate the
probability distribution in the presence of noise and control signal
with F.=0.01, 0.02, 0.03, respectively. w,=0.039. (b) At F,.=0.01,
the occupation probability around period 1 increases significantly
even though the probability around period 2 remains maximum. (c)
At F.=0.02, the occupation probability around period 1 is almost
double that of period 2. (e) At F.=0.03, the occupation probability
around period 2 further declines. Consequently, the peak around
period 1 increases further.

even a small increase of the control amplitude from the crisis
value. Thus we confirm the ability of the control mechanism
from the analysis of a large number of trajectories with ran-
dom initial phases.

It is noteworthy that a small-amplitude periodic control
can create such a fascinating qualitative change in the mul-
tistable scenario. Apparently it should be a tough proposition
to make a system chaotic with a slow-periodic drive if the
drive amplitude is small. To give a typical example, consider
the case when the oscillator is driven only by a periodic force
of frequency w;=0.04 without any secondary control or
noise. We have observed that the first period doubling occurs
relatively at a large drive amplitude (F;>0.98). This is be-
cause w,;=0.039 lies around the 50th period-2 subharmonic
resonance region and it is known that higher order period-2
subharmonic resonances occur at increasingly large drive
amplitude [20]. In sharp contrast, in the presence of the pri-
mary drive, the slow-periodic (w,=0.039) control force leads
to the Feigenbaum route to chaos and that too at a small
amplitude (F,=0.03). There are some similar reports on
controlled destruction of attractors by periodic modulation of
system parameters [28,29]. Pisarchik er al. [29] have sug-
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gested that the threshold amplitude for the attractor destruc-
tion will be minimum when the control frequency is in the
close vicinity of an eigenfrequency of that attractor. While
this may be so for the creation of crisis of a chaotic attractor,
one still needs to know how such a small amplitude could
make a system chaotic, say via a sequence of period dou-
bling. This can happen if the effective control amplitude is
sufficiently large. We believe that such an enhancement of
the effective control amplitude can occur due to the nonlin-
ear interaction between the drive and the control. Also, the
enhancement will be more prominent if either of the periodic
forces (or both) belongs to some (sub)harmonic resonance
region. We attempt to explain qualitatively in a few lines by
analyzing the role of the primary drive (frequency w,) on the
enhancement of the effective control amplitude. One can
take into account the spectral line at frequency w, of any
dynamic variables (say X or Y) and analyze how it undergoes
enhancement due to the presence of the primary drive. Let us
consider the case of the period-2 attractor whose spectrum is
a Fourier series of frequency w,/2. The additional presence
of the control driving force (of frequency w,) creates side-
bands around each spectral line of the uncontrolled attractor,
in addition to generate a Fourier spectrum of w.. For in-
stance, the spectral lines of frequencies w;/2* w, will be
created around the line of frequency w,/2. The nonlinearity
of the oscillator creates further interactions between each of
these side bands (say of frequency w,/2+ w,) with the cor-
responding spectral line of frequency w,/2, modifying the
amplitude of the spectral line of frequency w,. Similarly, the
interaction between the other side band (of frequency w,/2
—w,) and the line at w,/2 will also contribute in the modifi-
cation of the amplitude at w,.. In the same way, the interac-
tions among the higher-order spectral lines of the original
spectrum (i.e., of frequency nw,/2;n>1) with its side bands
(of frequency nw,/2 * w,) will also contribute in modifying
the amplitude at w,.. The effective control amplitude will be
maximum when all these terms are in phase. The effective
amplification will have a resonant effect if either the drive or
the control (or both) are in some (sub)harmonic resonance. In
our case, the drive is in the period-2 subharmonic resonance.
We believe this could provide some physical insight of the
fascinating efficiency of the control perturbation in the pres-
ence of the drive.

III. CONTROL OF HOPPING INTERMITTENCY
IN LORENZ MODEL DYNAMICS

Lorenz equations are described by

X=—0o(X-Y),
Y=rX-Y-XZ,
Z=XY-bZ, (2)

where o, r, and b are well known Lorenz parameters. We fix
o=10, b=1.2, and observe multistability (coexistence of
chaotic attractor with two steady states) in the interval
16.25<r=18.25. For further details about the creation of
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FIG. 3. (Color online) Control of hopping intermittency in the
case of the Lorenz model; ry=17.15, =10, b=1.2, A=5.0. (a) In
the absence of control, the occupation probability is highest around
the saddle. The distribution also exhibits two maxima around the
steady states. Plots (b)—(d) illustrate the probability distributions in
the presence of control modulation over r with control frequency
v=0.8 and 6§=0.03, 0.05, 0.07, respectively. As the control ampli-
tude is increased, the occupation probability around the saddle (as
well as the entire chaotic attractor) comes down. In contrast, the
occupation probability around the steady states increases sharply. In
other words, the intermittent visits to the chaotic attractor are con-
trolled and the steady states become the most frequently visited
attractors.

this multistable region, we refer to Fig. 1 and the associated
discussions in Goswami [30]. As a typical example of con-
trol, we consider the operating condition in the middle of the
multistable region at r=17.15, and introduce the Gaussian
white noise (of zero mean) in the right-hand side of each
equation. For simplicity, we also consider each noise genera-
tor having identical standard deviation (A). Similar to the
case of the Toda oscillator, we investigate the noise-induced
intermittent transitions of a large number of trajectories (N,
=400) with initial points organized in a two-dimensional
(20X 20) array formation over the phase-space region
(-12<X<12;5<Z<25) that covers the chaotic attractor
and the steady states. We simulate the dynamics of all trajec-
tories for large number of time steps (N;~600000) and
compute the total occupation distribution of the trajectory
points in the same phase-space region, divided in
N,(=400X 400) pixels. Thus the probability distribution
D(X Y):M. Since D is usually small, in the three-
’ NiN>N; y ’

dimensional plots of D(X,Z) in Fig. 3, we show D scaled up
by some suitable number. Figure 3(a) shows the probability
distribution for noise with standard deviation 6=5.0. We ob-
serve that the occupation probability is highest around the
saddle point (X=0, Y=0, Z=0). This plot also exhibits two
peaks around the two stable steady states, thus indicating
multistate intermittency. The peaks around the steady states
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are separated from that of the chaotic attractor by unstable
periodic orbits (UPQOs) that define the basin boundaries. As
we introduce the control modulation over r in the following
form: {r=ry[1+6cosQmv7)]; ry=17.15; v=0.8}, and in-
crease the control amplitude, the probability distribution un-
dergoes a fascinating transformation. Figures 3(b)-3(d) show
the probability  distributions, respectively, for o
=0.003, 0.005, 0.007. One clearly notices that as the control
parameter value is increased, the occupation probability
around the saddle comes down. In contrast, the probability
sharply increases around the steady states. Figure 3(d) shows
a contrasting scenario with respect to the uncontrolled case.
The occupation probability around the saddle is much less in
comparison to those around the steady states. In other words,
the controlled scenario indicates that the steady states are
more frequently visited than the chaotic attractor. This is a
clear indication of the control on the noise-induced multi-
state intermittency. The underlying mechanism behind the
control has some similarity with the Toda oscillator scenario.
In the case of the Lorenz model, the chaotic attractor under-
goes a boundary crisis due to the collision with the UPOs.
We refer to Goswami [30] for further details about the con-
trolled creation of the boundary crisis of the chaotic attractor
by small periodic modulation of any system parameter. In
fact, the threshold control amplitude (to create boundary cri-
sis) could be reduced significantly if the control frequency is
equal to or multiples of the frequency of the unstable peri-
odic orbits. Under such circumstances, the UPOs undergo
resonant evolutions in the phase space, resulting in the crisis.
The UPO frequency for the given operating condition is 0.85
which is close to our control frequency. This could be one of
the reasons for the crisis of the chaotic attractor at such a
small modulation depth of the control. In a similar way, hop-
ping intermittency can also be controlled by suitable modu-
lation of any other system parameters. For instance, first we
demonstrate the control by modulation over o. For the un-
controlled scenario, we refer back to the case, shown in Fig.
3(a). Next we introduce the control modulation over o in the
following form: {o=0ay[1+8cosmv7)]; r=17.15, 0y=10;
b=1.2, v=0.8}, and increase the control amplitude gradually.
Figures 4(a) and 4(b) show the probability distribution for
0=0.02 and 0.05, respectively. The control frequency v
=1.7. As one can notice, at relatively small control ampli-
tude, the saddle is the most frequently visited attractor [see
Fig. 4(a)]. However, as & is increased, a completely contrast-
ing scenario occurs when the steady states become most fre-
quently visited and the chaotic attractor the least. This im-
plies that the chaotic attractor has been destroyed via
boundary crisis, very similar to the case of control modula-
tion over r, and the threshold modulation depth for the
boundary crisis in the presence of noise is <0.05. Similarly,
next we analyze the effect of periodic modulation over b of
the following form: {b=by[1+Scos(2mv7)]; r=17.15, o,
=10; b=1.2, v=1.7}. Figures 4(c) and 4(d) illustrate the
probability distribution for 6=0.003, 0.01, respectively. Here
again we find that with the increase of modulation over b, the
occupation probability around the saddle significantly comes
down while the peaks around the steady states become more
prominent. Thus the threshold modulation depth for the
boundary crisis in the presence of noise is <0.01. Also, we
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FIG. 4. (Color online) Demonstration of the control mechanism
by periodic modulation over o and b: ry=17.15, 0=10, b=1.2, A
=5.0. (a) and (b) refer to ¢ modulation with §=0.02 and 0.05,
respectively. The control frequency v=1.7. As the control amplitude
is increased, the intermittent visits to the chaotic attractor, in par-
ticular, the saddle reduces significantly. On the contrary, the steady
states are visited more frequently. (c) and (d) refer to b modulation
with 6=0.003 and 0.01, respectively. The control frequency v
=0.82. Here again, one may notice that the little increase of control
amplitude leads to a significant decrease of occupation probability
over the chaotic attractor, and simultaneous increase of occupation
probability around the steady states. These features are very similar
to those for o modulation.

observe that any parameter can be modulated with a small-
amplitude, periodic perturbation to control noise-induced
multistate intermittency in the Lorenz model dynamics.

We may note finally a few lines about our recent experi-
ments [31] that have validated excellently the current theo-
retical demonstrations. In particular, we have carried out
control experiments individually with an analog circuit of
Lorenz equations and a bistable cavity-loss modulated CO,
laser. The two-level laser rate equations model (and also the
vibro-rotational model) of CO, laser may be reduced to the
Toda oscillator model we studied in Sec. II. The periodic
modulation of any system parameters (cavity loss, cavity
length, or pump parameter) provides the driving force. In-
deed, the CO, laser experiments are similar to our theoretical
results. Similarly, the analog circuit experiments resemble
those of Lorenz equations remarkably. We have analyzed the
probability distribution of noise-induced multistate hopping
intermittency first without control and then in the presence of
control at various control amplitudes. The controlled sce-
nario has been found very similar to our theoretical demon-
strations.

To conclude, we have demonstrated that a small-
amplitude periodic perturbation can control the noise-
induced intermittent transitions among multiple coexisting
attractors. These features are observed theoretically in two
standard models, namely, Toda oscillator and Lorenz equa-
tions, and are recently validated experimentally.
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CONTROL OF MULTISTATE HOPPING INTERMITTENCY

We believe the control mechanism in the form of a small-
amplitude slow periodic perturbation could also be advanta-
geous for more complex systems that have several interde-
pendent nonlinear subsystems. For instance, consider the
network of nonlinear systems, (e.g., coupled array of lasers
or electronic circuits) some of which can exhibit hopping
intermittency. Similarly, we may think of the human body
comprising nervous, circulatory, respiratory, and other sys-
tems whose functional properties are dynamically interde-
pendent. Consider the case when one system exhibits inter-
mittent jumps towards undesirable attractors, and the
objective is to control the same without grossly affecting
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other systems. In such circumstances, a strong perturbation
may not be preferable. Instead, we believe, the small-
amplitude, slow-periodic perturbation would be of immense
help and may be a necessary mechanism of control. This is
because it may act selectively on the particular multistable
system without perturbing other systems so significantly.
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